精英家教网 > 高中数学 > 题目详情
等差数列{an}中,已知3a5=7a10,且a1<0,则数列{an}前n项和Sn(n∈N*)中最小的是( )
A.S7或S8
B.S12
C.S13
D.S14
【答案】分析:设公差为d,则3由题意可得(a1+4d)=7(a1+9d),解得 d=-,可得 an=.令 <0,可得 当n≥14时,an>0,当n≤13时,an<0,由此可得数列{an}前n项和Sn(n∈N*)中最小的.
解答:解:等差数列{an}中,已知3a5=7a10,且a1<0,设公差为d,
则3(a1+4d)=7(a1+9d),解得 d=-
∴an=a1+(n-1)d=
<0,可得 n>,故当n≥14时,an>0,当n≤13时,an<0,
故数列{an}前n项和Sn(n∈N*)中最小的是 S13
故选C.
点评:本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=-4,且a1、a3、a2成等比数列,使{an}的前n项和Sn<0时,n的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列﹛an﹜中,a3=5,a15=41,则公差d=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an }中,an≠0,且 an-1-an2+an+1=0,前(2n-1)项和S2n-1=38,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,设S1=10,S2=20,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)在等差数列{an}中,d=2,a15=-10,求a1及Sn
(2)在等比数列{an}中,a3=
3
2
S3=
9
2
,求a1及q.

查看答案和解析>>

同步练习册答案