精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x+1x+1

(I)用定义证明函数在区间[1,+∞)是增函数;
(II)求该函数在区间[2,4]上的最大值与最小值.
分析:(Ⅰ)在区间[1,+∞)内任取两数x1,x2并规定好大小,再作差f(x1)-f(x2),根据增函数的定义判断即可;
(Ⅱ)又(1)可知f(x)=
2x+1
x+1
在区间[1,+∞)是增函数,从而在[2,4]上亦然为增函数,于是可求得函数在区间[2,4]上的最大值与最小值.
解答:(I)证明:任取1≤x1<x2,f(x1)-f(x2)=
2x1+1
x1+1
-
2x2+1
x2+1
=
(x1-x2
(x1+1)•(x2+1) 

∵1≤x1<x2,故x1-x2<0,(x1+1)(x2+1)>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函数f(x)=
2x+1
x+1
在区间[1,+∞)是增函数;
(II)由(I)知函数f(x)=
2x+1
x+1
在[2,4]上是增函数,
∴f(x)max=f(4)=
2×4+1
4+1
=
9
5

f(x)min=f(2)=
5
3
点评:本题考查函数单调性的性质,着重考查利用函数单调性的定义证明其单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案