精英家教网 > 高中数学 > 题目详情
3.若双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的焦距为10,点P(-2,1)在其渐近线上,则双曲线的方程为(  )
A.$\frac{x^2}{80}$-$\frac{y^2}{20}$=1B.$\frac{x^2}{20}$-$\frac{y^2}{80}$=1C.$\frac{x^2}{20}$-$\frac{y^2}{5}$=1D.$\frac{x^2}{5}$-$\frac{y^2}{20}$=1

分析 利用双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的焦距为10,点P(-2,1)在其渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.

解答 解:∵双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的焦距为10,点P(-2,1)在其渐近线上,
∴a2+b2=25,a=2b,
∴b=$\sqrt{5}$,a=2$\sqrt{5}$
∴双曲线的方程为$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1.
故选:C.

点评 本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求椭圆在点(asinθ,bcosθ )处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a、b、c、d均为实数,使不等式$\frac{a}{c}$>$\frac{c}{d}$>0和ad<bc都成立的一组值(a、b、c、d)是(4,9,1,2).(只要写出适合条件的一组值即可)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线a⊥平面α,平面β⊥平面α,则a与β的位置关系为(  )
A.a与β相交B.a∥βC.a?βD.a∥β或a?β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的点P(1,$\frac{\sqrt{3}}{2}$)到其左、右焦点F1、F2的距离之和等于4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若经过点F1且倾斜角为$\frac{π}{4}$的直线l与椭圆交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线y=1+$\sqrt{4-{x}^{2}}$与直线y=k(x+2)+5有两个交点,则实数k的取值范围是(  )
A.[-1,-$\frac{3}{4}$)B.(-∞,-1]C.(-$\frac{3}{4}$,0]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,E为A1A的中点.
求证:A1C∥平面EBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图的程序框图,运行相应的程序,若输入x的值为2,则输出y的值为(  )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=3|x-2|-m-2有唯一的零点,则直线mx+ky+3k-2=0恒过定点为(  )
A.($\frac{2}{7},-3$)B.(-2,-3)C.(0,$\frac{2}{7}$)D.(-2,0)

查看答案和解析>>

同步练习册答案