精英家教网 > 高中数学 > 题目详情
11.若直线a⊥平面α,平面β⊥平面α,则a与β的位置关系为(  )
A.a与β相交B.a∥βC.a?βD.a∥β或a?β

分析 当两个平面垂直时,一个平面的垂线与另一个平面的关系是平行或在平面上.

解答 解:∵直线a⊥平面α,平面β⊥平面α,
∴由平面与平面垂直的性质得:
直线a∥平面β,或直线a?平面β.
∴a∥β或a?β.
故选:D.

点评 本题考查直线与平面的位置关系的判断,是基础题,解题时要注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1$,一组平行直线的斜率是$\frac{3}{2}$.
(1)这组直线何时与椭圆相交?
(2)当它们与椭圆相交时,证明这些直线被椭圆截得的线段的中点在一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若f(x)=ax2+bx+c为一元二次函数,且f(1)=-$\frac{a}{2}$,a>2c>b;
?(1)试判别a,b的符号;
?(2)求函数y=f(x)图象被x轴所截得弦长的范围;
?(3)求证:f(x)在(0,2)在至少存在一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若0<x<2,则y=x(3-3x)的最大值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若3x2-x-1=0,求9x4+3x3-2x2-3x+2008的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数h(x)=lnx的反函数为φ(x),函数f(x)=φ(x)+ax2-x.
(1)当a=0时,求函数f(x)的极值;
(2)设函数f(x)在点P(t,f(t))(0<t<1)处的切线为l,直线l与y轴相交于点Q,若点Q的纵坐标恒小于1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的焦距为10,点P(-2,1)在其渐近线上,则双曲线的方程为(  )
A.$\frac{x^2}{80}$-$\frac{y^2}{20}$=1B.$\frac{x^2}{20}$-$\frac{y^2}{80}$=1C.$\frac{x^2}{20}$-$\frac{y^2}{5}$=1D.$\frac{x^2}{5}$-$\frac{y^2}{20}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)满足f(x+1)-f(x)=2x,且0是函数y=f(x)-1的一个零点.
(1)求f(x)的解析式;
(2)当x∈[-2,1]时,不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在(1+2x)6(1+y)4展开式中,xy2项的系数为72.

查看答案和解析>>

同步练习册答案