(本小题共13分)
在平面直角坐标系
中,已知圆
的圆心为
,过点
且斜率为
的直线
与圆
相交于不同的两点
.
(Ⅰ)求圆
的面积;
(Ⅱ)求
的取值范围;
(Ⅲ)是否存在常数
,使得向量
与
共线?如果存在,求
的值;如果不存在,请说
明理由.
(1)
.
(2)![]()
(3)![]()
【解析】解:(Ⅰ)圆的方程可化为
,可得圆心为
,半径为2,
故圆的面积为
.
---------------------3分
(Ⅱ)设直线
的方程为
.
法一:
将直线方程代入圆方程得
,
整理得
. ① ---------------------4分
直线与圆交于两个不同的点
等价于
, ---------------------6分
解得
,即
的取值范围为
. ---------------------8分
法二:
直线
与圆
交于两个不同的点
等价于
---------------------5分
化简得
,
解得
,即
的取值范围为
. ---------------------8分
(Ⅲ)设
,则
,由方程①,
②
又
.
③
---------------------10分而
.
所以
与
共线等价于
---------------------11分
将②③代入上式,解得
. ---------------------12分
科目:高中数学 来源: 题型:
(本小题共13分)
已知函数![]()
(I)若x=1为
的极值点,求a的值;
(II)若
的图象在点(1,
)处的切线方程为
,
(i)求
在区间[-2,4]上的最大值;
(ii)求函数
的单调区间.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市高三压轴文科数学试卷(解析版) 题型:解答题
(本小题共13分)
已知向量
,设函数
.
(Ⅰ)求函数
在
上的单调递增区间;
(Ⅱ)在
中,
,
,
分别是角
,
,
的对边,
为锐角,若
,
,
的面积为
,求边
的长.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题
(本小题共13分)
某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖.
(Ⅰ)求分别获得一、二、三等奖的概率;
(Ⅱ)设摸球次数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源:北京市宣武区2010年高三第一次质量检测数学(文)试题 题型:解答题
(本小题共13分)
已知函数![]()
(I)当a=1时,求函数
的最小正周期及图象的对称轴方程式;
(II)当a=2时,在
的条件下,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com