精英家教网 > 高中数学 > 题目详情
已知正三棱锥S-ABC的外接球的表面积为36π,M、N分别是SC、BC的中点,且MN⊥AM,则此三棱锥的侧棱SA=
 
考点:棱锥的结构特征
专题:计算题,空间位置关系与距离
分析:由题意可证MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,由此利用外接球的表面积公式求出直径,再求出SA.
解答: 解:∵三棱锥S-ABC正棱锥,∴SB⊥AC(对棱互相垂直),MN∥SB,∴MN⊥AC
又∵MN⊥AM,AM∩AC=A,∴MN⊥平面SAC,SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,
设SA=SB=SC=a,外接球的半径为R,则4πR2=36π,∴R=3,
∴2R=
3a2
⇒a=2
3

故答案为:2
3


点评:考查三棱锥的外接球的表面积,考查空间想象能力,三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x、y满足约束条件
x≤2
y≤2
x+y≥2
,则z=x+2y的取值范围是(  )
A、[0,4]
B、[4,6]
C、[2,4]
D、[2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a≠0),且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的“不动点”,若函数f(x)有且仅有一个不动点.
(1)求f(x)的解析式;
(2)若函数g(x)=f(x)+kx2在(0,4)上是增函数,求实数k的取值范围;
(3)是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[3m,3n]?若存在,请求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,两个焦点分别为F1和F2,椭圆C上一点到F1和F2的距离之和为12.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 设点B是椭圆C 的上顶点,点P,Q是椭圆上;异于点B的两点,且PB⊥QB,求证直线PQ经过y轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是直线x=-4与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,当线段MN的中点落在正方形Q内(包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足条件
x+y≤1
y≥0
x-y≤0
则z=(x-1)2+y2的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-1,0},则满足A∪B={-1,0,1}的集合B的个数是
 

查看答案和解析>>

同步练习册答案