精英家教网 > 高中数学 > 题目详情
如图,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于
 
考点:与圆有关的比例线段
专题:直线与圆
分析:由已知条件推导出∠CAO=∠OAB=∠BAD,∠ABD=90°,由此根据∠DAC=78°,能求出∠ADO的大小.
解答: 解:∵AB、AC为⊙O的切线,B和C是切点,
延长OB到D,使BD=OB,连接AD,
∴∠CAO=∠OAB=∠BAD,∠ABD=90°,
∵∠DAC=78°,
∴∠BAD=
1
3
∠DAC=26°,
∴∠ADO=90°-26°=64°.
故答案为:64°.
点评:本题考查角的大小的求法,是中档题,解题时要认真审题,注意切线性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),左、右两个焦点分别为F1、F2,上顶点M(0,b),△MF1F2为正三角形且周长为6,直线l:x=my+4与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥S-ABC的外接球的表面积为36π,M、N分别是SC、BC的中点,且MN⊥AM,则此三棱锥的侧棱SA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确命题的序号是
 

①函数y=sin4x-cos4x的最小正周期是π;
②终边在y轴上的角的集合是{α|α=
2
,k∈Z};
③在同一坐标系中,函数y=sinx的图象与函数y=x的图象有3个公共点;
④把函数y=3sin(2x+
π
3
)的图象向右平移
π
6
得到y=3sin2x的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足约束条件:
x≥2
y≥x
2x+y≤12
,则z=x2+y2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1:y=-
1
2p
x2
(p>0)的焦点与双曲线C2
x2
3
-y2=1的左焦点的连线交C1于第三象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则P=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下四个命题:
①若“p且q”为假命题,则p、q均为假命题;
②命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2且y<3,则x+y<5”;
③在△ABC中,“A>45°”是“sinA>
2
2
”的充要条件.
④命题“?x0∈R,ex0≤0”是真命题.其中正确的命题的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①已知函数f(x)为连续可导函数,若f(x)为奇函数,则f(x)的导函数f′(x)为偶函数;
②若函数f(x)=x2,则f′(2x)=[f(2x)]′;
③若函数g(x)=(x-1)(x-2)…(x-5)(x-6),则g′(6)=120;
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值”的充要条件.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x、y满足条件
3x-5y+6≥0
2x+3y-15≤0
y≥0
,当且仅当x=y=3时,z=ax-y取最小值,则实数a的取值范围是(  )
A、(-
2
3
3
5
)
B、(-
2
3
3
4
)
C、(-
3
4
2
3
)
D、(
3
4
3
5
)

查看答案和解析>>

同步练习册答案