精英家教网 > 高中数学 > 题目详情

一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为X,将球放回袋中,然后再从袋中随机取一个球,该球的编号为Y
(1)列出所有可能结果。 
(2)求事件A=“取出球的号码之和小于4”的概率。
(3)求事件B=“编号X<Y”的概率

(1)16
(2)
(3)

解析试题分析:解:(1)列出所有可能结果(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)   共有16种。
(2)取出球的号码之和小于4共含有:
(1,1),(1,2),(2,1)3种
P(A)=
(3)编号“X<Y”共含有:
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种   
P(B)=
考点:古典概型
点评:主要是考查了古典概型概率的求解和简单运用,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某小组共有五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2
如下表所示:

 
A
B
C
D
E
身高
1.69
1.73
1.75
1.79
1.82
体重指标
19.2
25.1
18.5
23.3
20.9
 
(Ⅰ)从该小组身高低于的同学中任选人,求选到的人身高都在以下的概率
(Ⅱ)从该小组同学中任选人,求选到的人的身高都在以上且体重指标都在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.

 
 员工号
    1
    2
    3
    4
   甲组
  件数
   9
    11
    1l
    9
 
 员工号
    1
    2
    3
    4
   乙组
  件数
   9
    8
    10
    9
(1)用茎叶图表示两组的生产情况;
(2)求乙组员工生产件数的平均数和方差;
(3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率.
(注:方差,其中为x1,x2, ,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

今年我国部分省市出现了人感染H7N9禽流感确诊病例,各地家禽市场受其影响生意冷清.A市虽未发现H7N9疑似病例,但经抽样有20%的市民表示还会购买本地家禽.现将频率视为概率,解决下列问题:
(Ⅰ)从该市市民中随机抽取3位,求至少有一位市民还会购买本地家禽的概率;
(Ⅱ)从该市市民中随机抽取位,若连续抽取到两位愿意购买本地家禽的市民,或
抽取的人数达到4位,则停止抽取,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

口袋中有5个大小相同的小球,其中1个小球标有数字“3”,2个小球标有数字“2”,2个小球标有数字“1”,每次从中任取一个小球,取后不放回,连续抽取两次。
(I)求两次取出的小球所标数字不同的概率;
(II)记两次取出的小球所标数字之和为X,求事件的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某市一个投保人能活到75岁的概率为0.60,试问:
(1)若有3个投保人, 求能活到75岁的投保人数的分布列;
(2)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.
(1)求此人患色盲的概率;
(2)如果此人是色盲,求此人是男人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(Ⅰ)求第一次试验恰摸到一个红球和一个白球概率;
(Ⅱ)记试验次数为,求的分布列及数学期望

查看答案和解析>>

同步练习册答案