精英家教网 > 高中数学 > 题目详情
16.(1)设a、b均为正实数,求证:$\frac{1}{a^2}+\frac{1}{b^2}+ab≥2\sqrt{2}$
(2)已知a>0,b>0,c>0,a2+b2+c2=4求ab+bc+ac的最大值.

分析 (1)利用基本不等式,即可证明;
(2)利用ab+ac+bc≤a2+b2+c2即可得出.

解答 (1)证明:∵a、b均为正实数,
∴$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥$\frac{2}{ab}$,
∵$\frac{2}{ab}$+ab$≥2\sqrt{2}$,
∴$\frac{1}{a^2}+\frac{1}{b^2}+ab≥2\sqrt{2}$(当且仅当a=b时取等号)
(2)∵(a-b)2≥0,(a-c)2≥0,(b-c)2≥0,
∴ab+ac+bc≤a2+b2+c2=4,当且仅当a=b=c时取等号.
∴ab+bc+ca的最大值是4.

点评 本题考查了基本不等式的性质,考查不等式的证明,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.响应国家提出的“大众创业,万众创新”的号召,小王同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产x万件,需另投入流动成本为C(x)万元.在年产量不足8万件时,$C(x)=\frac{1}{3}{x^2}+2x$(万元);在年产量不小于8万件时,$C(x)=7x+\frac{100}{x}-37$(万元).每件产品售价为6元.假设小王生产的商品当年全部售完.
(Ⅰ)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式(注:年利润=年销售收入-固定成本-流动成本);
(Ⅱ)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\frac{{3{x^2}}}{{\sqrt{1-x}}}+lg(3x+1)$的定义域是(  )
A.$\left\{x|-\frac{1}{3}<x<1\right\}$B.{x|x<1}C.$\left\{x|x>-\frac{1}{3}\right\}$D.$\left\{x|x>1或x<-\frac{1}{3}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={-1,0,1},$B=\left\{x\right.|\frac{x+1}{x-1}\left.{<0}\right\}$,则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.
(1)求a,b的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若将函数y=cos(2x)的图象向左平移$\frac{π}{12}$个单位长度,则平移后的函数对称轴为$x=\frac{kπ}{2}-\frac{π}{12}({k∈Z})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的标准方程为:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{3{a}^{2}}$=1(a>0)
(1)当a=1时,求椭圆的焦点坐标及椭圆的离心率;
(2)过椭圆的右焦点F2的直线与圆C:x2+y2=4a2(常数a>0)交于A,B两点,求|F2A|•|F2B|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知p:-2≤x≤1,q:(x-a)(x-a-4)>0,若p是q成立的充分不必要条件,则实数a的取值范围是(-∞,-6)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左右焦点分别为F1,F2,点P 在椭圆上运动,$|{{{\overrightarrow{PF}}_1}}|×|{\overrightarrow{P{F_2}}}|$ 的最大值为m,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值为n,且m≥2n,则该椭圆的离心率的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

同步练习册答案