| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 4 |
分析 设$\overrightarrow{BM}$=t$\overrightarrow{BC}$,将$\overrightarrow{AN}$用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出来,即可找到λ和μ的关系,从而求出λ+μ的值.
解答 解:设$\overrightarrow{BM}$=t$\overrightarrow{BC}$(0≤t≤1),$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,
所以$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{AM}$=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{BM}$)
=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$t$\overrightarrow{BC}$
=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$t($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=($\frac{1}{4}$-$\frac{1}{4}$t)$\overrightarrow{AB}$+$\frac{1}{4}$t$\overrightarrow{AC}$,
又$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,
所以λ+μ=($\frac{1}{4}$-$\frac{1}{4}$t)+$\frac{1}{4}$t=$\frac{1}{4}$.
故选:A.
点评 本题主要考查了平面向量的基本定理,即平面内任一向量都可由两不共线的向量唯一表示出来.属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 75 | B. | 85 | C. | 100 | D. | 110 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com