精英家教网 > 高中数学 > 题目详情
9.某商场的20件不同的商品中有$\frac{3}{4}$的商品是进口的,其余是国产的,在进口的商品中高端商品的比例为$\frac{1}{3}$,在国产的商品中高端商品的比例为$\frac{3}{5}$.
(1)若从这20件商品中按分层(分三层:进口高端与进口非高端及国产)抽样的方法抽取4件,求抽取进口高端商品的件数;
(2)在该批商品中随机抽取3件,求恰有1件是进口高端商品且国产高端商品少于2件的概率;
(3)若销售1件国产高端商品获利80元,国产非高端商品获利50元,若销售3件国产商品,共获利ξ元,求ξ的分布列及数学期望Eξ.

分析 (1)利用分层抽样的定义进行求解即可,注意按比例抽取即可;
(2)是古典概型的概率问题,但基本事件的个数不是通过列举产生的,而是利用组合数产生;
(3)首先要求出ξ的可能取值,然后求出相应的概率,利用随机变量的分布列进行求解即可.

解答 解:(1)由题意得,进口的商品有15件,其中5件是高端商品,10件是非高端商品,国产的商品有5件,其中3件是高端商品,2件是非高端商品,
若从这20件商品中按分层抽样的方法抽取4件,则抽取进口高端商品的件数为1.
(2)设事件B为“在该批商品中随机抽取3件,恰有1件是进口高端商品且国产高端商品少于2件”,
事件A1为“抽取的3件商品中,有1件进口高端商品,0件国产高端商品”,
事件A2为“抽取的3件商品中,有1件进口高端商品,1件国产高端商品”,
则P(B)=P(A1)+P(A2)=$\frac{{C}_{5}^{1}{C}_{12}^{2}}{{C}_{20}^{3}}$+$\frac{{C}_{5}^{1}{C}_{3}^{1}{C}_{12}^{1}}{{C}_{20}^{3}}$=$\frac{55}{190}$+$\frac{30}{190}$=$\frac{17}{38}$,
所以在该批商品中随机抽取3件,恰有1件是进口高端商品且国产高端商品少于2件的概率是$\frac{17}{38}$,
(3)由于这批商品中仅有5件国产商品,其中3件是高端商品,2件是非高端商品,
那么,当销售3件国产商品时,可能有1件高端商品,2件非高端商品,或2件高端商品,
1件非高端商品,或3件都是高端商品,
于是ξ的可能取值为180,210,240.
P(ξ=180)=$\frac{{C}_{3}^{1}{C}_{2}^{2}}{{C}_{5}^{3}}$=$\frac{3}{10}$,P(ξ=210)=$\frac{{C}_{3}^{2}{C}_{2}^{1}}{{C}_{5}^{3}}$=$\frac{6}{10}$=$\frac{3}{5}$,P(ξ=240)=$\frac{{C}_{3}^{2}}{{C}_{5}^{3}}$=$\frac{1}{10}$.
所以ξ的分布列为

ξ180210240
P$\frac{3}{10}$$\frac{3}{5}$$\frac{1}{10}$
故Eξ=180×$\frac{3}{10}$+210×$\frac{3}{5}$+240×$\frac{1}{10}$=204.

点评 本题主要考查函数的应用问题,涉及分层抽样,离散型随机变量的分布列和期望的计算,考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.矩形ABCD中,AB=2,AD=1,P为矩形内部一点,且AP=1.若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ∈R),则2λ+$\sqrt{3}$μ的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ex+ae-x,若f′(x)≥2$\sqrt{3}$恒成立,则a的取值范围为(  )
A.[3,+∞)B.(0,3]C.[-3,0)D.(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x2-1|,g(x)=a|x|-1.
(Ⅰ)求不等式f(x)≤3的解集;
(Ⅱ)若f(x)≥g(x)对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是(  )
A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若集合A={1,2,3}和B及C={1,2,3,4,5},且集合B满足A∩B=A和C∪B=C,则集合B的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一圆锥的母线长为4,若过该圆锥顶点的所有截面面积分布范围是(0,4$\sqrt{3}}$],则该圆锥的侧面展开图的扇形圆心角等于(  )
A.$\frac{π}{2}$B.π或$\sqrt{3π}$C.$\sqrt{3π}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=4sinxcosx+2cos2x-1的最小正周期为π,最大值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,M为边BC上的任意一点,点N在线段AM上,且满足$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),则λ+μ的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.1D.4

查看答案和解析>>

同步练习册答案