分析 画出图形,根据题意知λ,μ>0,根据条件对$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$两边平方,进行数量积的运算化简,再利用三角代换以及两角和与差的三角函数,从而求出2λ+$\sqrt{3}$μ的最大值.
解答
解:如图所示,依题意知,λ>0,μ>0;
根据条件,
${\overrightarrow{AP}}^{2}$=λ2${\overrightarrow{AB}}^{2}$+2λμ$\overrightarrow{AB}$•$\overrightarrow{AD}$+μ2${\overrightarrow{AD}}^{2}$=4λ2+μ2=1;
令λ=$\frac{1}{2}$cosθ,μ=sinθ,θ∈[0,$\frac{π}{2}$],
所以2λ+$\sqrt{3}$μ=cosθ+$\sqrt{3}$sinθ=2sin(θ+$\frac{π}{6}$);
所以当θ=$\frac{π}{3}$时,sin(θ+$\frac{π}{6}$)=1,此时2λ+$\sqrt{3}$μ取得最大值2.
故答案为:2.
点评 本题考查了平面向量数量积的运算问题,也考查了转化思想以及计算能力的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f′(1)<f′(2)<f(2)-f(1) | B. | f′(2)<f′(1)<f(2)-f(1) | C. | f′(2)<f(2)-f(1)<f′(1) | D. | f(2)-f(1)<f′(1)<f′(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com