分析 (1)由正方形的性质结合题意证出EO为△PBD的中位线,从而得到EO∥PA,利用线面平行的判定定理,即可证出PA∥平面EBD;
(2)由PA⊥底面ABCD,底面ABCD是矩形,可得PA⊥CD及AD⊥CD,进而由线面垂直的判定定理得到DC⊥平面PAD,进而由面面垂直的判定定理得到平面PAD⊥平面PDC.
解答
证明:(1))连接AC,与BD交于O,连接EO,因为底面ABCD为正方形,得O是AC的中点,
因为E是PC的中点,所以OE是三角形PAC的中位线,得EO∥PA,
又EO?平面EDB,PA?平面EDB
∴PA∥平面EDB;
(2)∵PA⊥底面ABCD,CD?底面ABCD
∴PA⊥CD.
∵底面ABCD是矩形,AD⊥CD.
又PA∩AD=A,AP?面PAD,AD?面PAD,
∴DC⊥平面PAD.
∵DC?平面PDC,
∴平面PDC⊥平面PAD.
点评 本题在特殊的四棱锥中证明线面平行,平面与平面垂直的判定,解答的关键是证得DC⊥平面PAD,属于中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A≤B≤C | B. | A≤C≤B | C. | B≤C≤A | D. | C≤B≤A |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com