精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|x+1|-|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三个不同的解,求实数a的取值范围.

分析 (1)若a=0,求得函数f(x)的解析式,根据解析式分别求得f(x)≥0的解集;
(2)u(x)=|x+1|-|x|,做出y=u(x)和y=x的图象,方程f(x)=x恰有三个不同的实根,转化成y=u(x)与y=x的图象始终有3个交点,根据函数图象即可求得实数a的取值范围.

解答 解:(1)当a=0时,$f(x)=|{x+1}|-|x|=\left\{{\begin{array}{l}{-1,x<-1}\\{2x+1,-1≤x<0}\\{1,x≥0}\end{array}}\right.$,
所以当x<-1时,f(x)=-1<0,不合题意;
当-1≤x<0时,f(x)=2x+1≥0,解得$-\frac{1}{2}≤x<0$;
当x≥0时,f(x)=1>0,符合题意.
综上可得,f(x)≥0的解集为$[-\frac{1}{2},+∞)$.
(2)设u(x)=|x+1|-|x|,y=u(x)的图象和y=x的图象如图所示.

易知y=u(x)的图象向下平移1个单位以内(不包括1个单位),与y=x的图象始终有3个交点,
从而-1<a<0.
所以实数a的取值范围为(-1,0).

点评 本题主要考查绝对值不等式求解,函数与方程的应用,分段函数的图象和性质,综合性较强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知f(x)为偶函数,且满足f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根$\frac{1}{2016}$,则方程f(x)=0在区间[-2016,2016]内的根的个数为(  )
A.4032B.4036C.2016D.2018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.直角坐标系中曲线C的参数方程为$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ为参数).
(1)求曲线C的直角坐标方程;
(2)经过点M(2,2)作直线l交曲线C于A,B两点,若M恰好为线段AB的中点,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若方程$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1有增根,则增根是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解方程x2+$\frac{{x}^{2}}{(x+1)^{2}}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合M={x|x<-3或x>5},P={x|(x-a)(x-8)≤0}
(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件;
(3)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一个必要但不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB是圆O的直径,CD是弦,CD⊥AB于点E,
(1)求证:△ACE∽△CBE;
(2)若AB=4,设OE=x(0<x<2),CE=y,请求出y关于x的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx-$\frac{1}{2}a{x^2}$-2x,其中a≤0
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,求a-2b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案