精英家教网 > 高中数学 > 题目详情
a为已知实数,它使得仅有一个实数x满足不等式|x2+2ax+3a|≤2,则实数a=   
【答案】分析:将绝对值符号去掉,问题转化为有且只有一个实数x使x2+2ax+3a≤2成立,利用相应二次函数可知函数y=x2+2ax+3a-2的图象与x轴相切,从而使问题得解.
解答:解:因为|x2+2ax+3a|≤2,即-2≤x2+2ax+3a≤2
又因为只有一个实数x满足关于x的不等式|x2+2ax+3a|≤2,所以有且只有一个实数x使x2+2ax+3a≤2成立
即有且只有一个实数x使x2+2ax+3a-2≤0成立,∴可知函数y=x2+2ax+3a-2的图象与x轴相切
所以根的判别式=4a2-4(3a-2)=0,所以a2-3a+2=0
所以a=1或2
故答案为a=1或2.
点评:本题的考点是一元二次不等式的应用,主要考查一元二次不等式的解法,考查三个二次之间的关系,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a为已知实数,它使得仅有一个实数x满足不等式|x2+2ax+3a|≤2,则实数a=
1或2
1或2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在坐标轴上的椭圆Ω,它的离心率为
1
2
,一个焦点和抛物线y2=-4x的焦点重合,过直线l:x=4上一点M引椭圆Ω的两条切线,切点分别是A,B.
(Ⅰ)求椭圆Ω的方程;
(Ⅱ)若在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的点(x0,y0)处的椭圆的切线方程是
x0x
a2
+
y0y
b2
=1
.求证:直线AB恒过定点C;并出求定点C的坐标.
(Ⅲ)是否存在实数λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(点C为直线AB恒过的定点)若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Ω的离心率为
1
2
,它的一个焦点和抛物线y2=-4x的焦点重合.
(1)求椭圆Ω的方程;
(2)若椭圆
x2    
a2
+
 y2   
b2
=1(a>b>0)
上过点(x0,y0)的切线方程为
 x0x   
a2
+
y0y    
b2
=1

①过直线l:x=4上点M引椭圆Ω的两条切线,切点分别为A,B,求证:直线AB恒过定点C;
②是否存在实数λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案