精英家教网 > 高中数学 > 题目详情

(文)(本大题满分12分)

掷一枚硬币,正、反两面出现的概率都是0.5,把这枚硬币反复掷8次,这8次中的第n次中,假若正面出现,记an=1,若反面出现,记an=-1,令Sn=a1+a2+…+an(1≤n≤8),在这种情况下,试求下面的概率:

(1)S2≠0且S8=2的概率;

(2)S4=0且S8=2的概率.

,


解析:

:解(1) 即 ∴分两类讨论如下:

1°若a1=1=a2,则后六次3正3反,∴ ……2分

2°若a1=-1=a2,则后六次5正1反,∴…4分

故所求概率为                 ……….6 分

(2) 即 ∴前四次2正2反,后四次1反3正……….8 分

故所求概率为       ……….12 分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009江西卷文)(本小题满分12分)

设函数.          

(1)对于任意实数恒成立,求的最大值;

(2)若方程有且仅有一个实根,求的取值范围.          

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009山东卷文) (本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;      

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009山东卷文)(本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;   

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009山东卷文)(本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;   

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

同步练习册答案