精英家教网 > 高中数学 > 题目详情

定义在上的函数,如果对任意,恒有)成立,则称阶缩放函数.
(1)已知函数为二阶缩放函数,且当时,,求的值;
(2)已知函数为二阶缩放函数,且当时,,求证:函数上无零点;
(3)已知函数阶缩放函数,且当时,的取值范围是,求)上的取值范围.

(1)1;(2)详见解析;(3).

解析试题分析:(1)本小题首先利用函数为二阶缩放函数,所以,于是由得,,由题中条件得
(2)本小题首先对时,,得到,方程均不属于),所以当时,方程无实数解,所以函数上无零点;
(3)本小题针对时,有,依题意可得,然后通过分析可得取值范围为.
试题解析:(1)由得,      2分
由题中条件得        4分
(2)当时,,依题意可得:
。  6分
方程
均不属于)  8分
)时,方程无实数解。
注意到,所以函数上无零点。 10分
(3)当时,有,依题意可得:

时,的取值范围是 12分
所以当时,的取值范围是。 14分
由于 16分
所以函数)上的取值范围是:
。 18分
考点:1.新定义;2.函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数满足,且.
(1)求解析式
(2)当时,函数的图像恒在函数的图像的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当a=3时,求函数上的最大值和最小值;
(Ⅱ)求函数的定义域,并求函数的值域。(用a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已函数是定义在上的奇函数,在上时
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义域为的奇函数满足,且当时,.
(Ⅰ)求上的解析式;
(Ⅱ)若存在,满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)若函数上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义域为的单调减函数,且是奇函数,当时,
(1)求的解析式;(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数为常数)的图象过原点,且对任意总有成立;
(1)若的最大值等于1,求的解析式;
(2)试比较的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不低于万元,同时不超过投资收益的.
(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型的基本要求.
(2)下面是公司预设的两个奖励方案的函数模型:
;    ②
试分别分析这两个函数模型是否符合公司要求.

查看答案和解析>>

同步练习册答案