精英家教网 > 高中数学 > 题目详情

已知二次函数满足,且.
(1)求解析式
(2)当时,函数的图像恒在函数的图像的上方,求实数的取值范围.

(1);(2).

解析试题分析:(1)根据二次函数 满足条件,及,可求,,从而可求函数的解析式;(2)在区间上,的图象恒在的图象上方,等价于上恒成立,等价于上恒成立,求出左边函数的最小值,即可求得实数 的取值范围.
试题解析:(1)由,令 ,得;令 ,得.
,故 解得的解析式为.
(2)因为的图像恒在的图像上方,所以在上,恒成立.即:在区间恒成立.所以令 ,故上的最小值为 ,∴ .
考点:1.函数的解析式求法;2.二次函数的图像与性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3.
(1)判断f(x)的奇偶性;(2)求证:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为正实数,函数.
(1)若,求的取值范围;(2)求的最小值;
(3)若,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(I)证明:函数上单调递增;
(Ⅱ)求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求不等式的解集:
(2)求函数的定义域:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为10的正方形内有一动点,作,求矩形面积的最小值和最大值,并指出取最大值时的具体位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产某种产品(百台),总成本为(万元),其中固定成本为2万元, 每生产1百台,成本增加1万元,销售收入(万元),假定该产品产销平衡。
(1)若要该厂不亏本,产量应控制在什么范围内?
(2)该厂年产多少台时,可使利润最大?
(3)求该厂利润最大时产品的售价。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知幂函数的图象经过点
(Ⅰ)求函数的解析式;
(Ⅱ)判断函数在区间上的单调性,并用单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数,如果对任意,恒有)成立,则称阶缩放函数.
(1)已知函数为二阶缩放函数,且当时,,求的值;
(2)已知函数为二阶缩放函数,且当时,,求证:函数上无零点;
(3)已知函数阶缩放函数,且当时,的取值范围是,求)上的取值范围.

查看答案和解析>>

同步练习册答案