已知,函数.
(I)证明:函数在上单调递增;
(Ⅱ)求函数的零点.
(I)详见解析;(Ⅱ)详见解析;
解析试题分析:(I)先在上任取两变量,设,再对作差变形化简,判断大小确定单调性.
(Ⅱ)要求函数f(x)的零点,即求方程f(x)=0的根,对和分情况求解,其中当时,令, 即,对此方程中参数a对根的情况进行讨论求解.
试题解析: (1)证明:在上任取两个实数,且,
则. 2分
∵, ∴.
∴, 即. ∴.
∴函数在上单调递增. 4分[K]
(2) (ⅰ)当时, 令, 即, 解得.
∴是函数的一个零点. 6分
(ⅱ)当时, 令, 即.(※)
①当时, 由(※)得,∴是函数的一个零点; 8分
②当时, 方程(※)无解;
③当时, 由(※)得,(不合题意,舍去) 10分
综上, 当时, 函数的零点是和;
当时, 函数的零点是. 12分
考点:1.函数单调性的判断与证明;2.分段函数的解析式求法及其图象的作法;3.函数的零点.
科目:高中数学 来源: 题型:解答题
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图像,当时,图像是二次函数图像的一部分,其中顶点,过点;当时,图像是线段,其中,根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,函数.
(1)当时,画出函数的大致图像;
(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;
(3)试讨论关于x的方程解的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数是偶函数
(1)求k的值;
(2)若函数的图象与直线没有交点,求b的取值范围;
(3)设,若函数与的图象有且只有一个公共点,求实数的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的(且),存在,使得,则称具有性质.
(Ⅰ)已知函数,,判断是否具有性质,并说明理由;
(Ⅱ)已知函数 若具有性质,求的最大值;
(Ⅲ)若函数的定义域为,且的图象连续不间断,又满足,
求证:对任意且,函数具有性质.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com