精英家教网 > 高中数学 > 题目详情

已知函数是偶函数
(1)求k的值;
(2)若函数的图象与直线没有交点,求b的取值范围;
(3)设,若函数的图象有且只有一个公共点,求实数的取值范围

(1);(2) ;(3)

解析试题分析:(1)因为函数是偶函数,所以根据偶函数的定义,得到一个关于x,k的等式.由于对于任意的x都成立,相当于恒过定点的问题,所以求得k的值.
(2)因为函数的图象与直线没有交点,所以对应的方程没有解,利用分离变量的思维可得到一个等式,该方程无解.所以等价两个函数没有交点,所以求出函数的最值.即可得到b的取值范围.
(3)因为,若函数的图象有且只有一个公共点,所以等价于方程有且只有一个实数根.通过换元将原方程化为含参的二次方程的形式,即等价于该二次方程仅有一个大于零的实根,通过讨论即可得到结论.
试题解析:(1)因为为偶函数,所以
对于任意恒成立.
于是恒成立,
不恒为零,所以.                     4分
(2)由题意知方程即方程无解.
,则函数的图象与直线无交点.
因为,由,则
所以的取值范围是 .                     8分
(3)由题意知方程有且只有一个实数根.
,则关于的方程 (记为(*))有且只有一个正根.
,则,不合题意, 舍去;
,则方程(*)的两根异号或有两相等正根.
;但,不合题意,舍去;而
若方程(*)的两根异号
综上所述,实数的取值范围是.               12分
考点:1.函数的奇偶性.2.函数的与方程的思想的转化.3.换元法的应用.4.含参数的方程的根的讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ex-ex(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

注:此题选A题考生做①②小题,选B题考生做①③小题.
已知函数是定义在R上的奇函数,且当时有.
①求的解析式;②(选A题考生做)求的值域;
③(选B题考生做)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(I)证明:函数上单调递增;
(Ⅱ)求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求方程的根;
(2)若函数满足,求函数在的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为10的正方形内有一动点,作,求矩形面积的最小值和最大值,并指出取最大值时的具体位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若函数是定义在R上的偶函数,求a的值;
(Ⅱ)若不等式对任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)用定义证明上单调递增;
(2)若上的奇函数,求的值;
(3)若的值域为D,且,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a∈R且a≠1,求函数f(x)=在[1,4]上的最值.

查看答案和解析>>

同步练习册答案