科目:高中数学 来源: 题型:解答题
若函数f(x)=sin2ax-
sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为
.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈
,求点A的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=lnx-ax2+(2-a)x.
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<
时,f
>f
;
(3)若函数y=f(x)的图象与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:
<0.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2014)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ex-e-x(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
为常数,且
).
(1)当
时,求函数
的最小值(用
表示);
(2)是否存在不同的实数
使得
,
,并且
,若存在,求出实数
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=
a为常数且a∈(0,1).
(1)当a=
时,求f
;
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[
,
]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
是偶函数
(1)求k的值;
(2)若函数
的图象与直线
没有交点,求b的取值范围;
(3)设
,若函数
与
的图象有且只有一个公共点,求实数
的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com