精英家教网 > 高中数学 > 题目详情

(1)求不等式的解集:
(2)求函数的定义域:

(1);(2)

解析试题分析:(1)首先将首项系数化为正数,然后分解因式,进而可求得不等式的解集;(2)首先根据根式要有意义建立不等式,然后通过解分式不等式可求得结果.
试题解析:(1)∵,∴
,∴
∴原不等式的解集为
(2)要使函数有意义,须,解得
∴函数的定义域是
考点:1.一元二次不等式的解法;2.函数定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
⑴ 判断函数的单调性,并证明;
⑵ 求函数的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的定义域;
(2)判断的奇偶性并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.

(1)当时,画出函数的大致图像;
(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;
(3)试讨论关于x的方程解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上的奇函数,且
(1)求的值
(2)若,求的值
(3)若关于的不等式上恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数满足,且.
(1)求解析式
(2)当时,函数的图像恒在函数的图像的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数过点.
(1)求实数
(2)将函数的图像向下平移1个单位,再向右平移个单位后得到函数图像,设函数关于轴对称的函数为,试求的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,函数的图像在点处的切线方程;
(2)当时,解不等式
(3)当时,对,直线的图像下方.求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义域为的奇函数满足,且当时,.
(Ⅰ)求上的解析式;
(Ⅱ)若存在,满足,求实数的取值范围.

查看答案和解析>>

同步练习册答案