已知函数.
(1)当时,函数的图像在点处的切线方程;
(2)当时,解不等式;
(3)当时,对,直线的图像下方.求整数的最大值.
(1);(2);(3).
解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、极值、最值以及切线方程问题,考查综合运用数学知识和方法分析问题解决问题的能力,考查计算能力.第一问,要求切线方程需要求出切线的斜率和切点的纵坐标,利用点斜式直接写出切线方程;第二问,数形结合解对数不等式;第三问,因为当时,对,直线的图像下方,所以问题等价于对任意恒成立,下面只需求出,通过对函数的二次求导,判断函数的单调性和最值.
试题解析:(1),当时.切线, 2分
(2) 4分
(3)当时,直线恒在函数的图像下方,得
问题等价于对任意恒成立. 5分
当时,令,
令,,
故在上是增函数
由于
所以存在,使得.
则;,
即;
知在递减,递增
∴ 10分
∴又,,所以=3. 12分
考点:1.利用导数求切线方程;2.利用导数判断函数的单调性;3.利用导数求函数的最值;4.对数不等式的解法.
科目:高中数学 来源: 题型:解答题
某厂生产某种产品(百台),总成本为(万元),其中固定成本为2万元, 每生产1百台,成本增加1万元,销售收入(万元),假定该产品产销平衡。
(1)若要该厂不亏本,产量应控制在什么范围内?
(2)该厂年产多少台时,可使利润最大?
(3)求该厂利润最大时产品的售价。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知偶函数y=f(x)定义域是[-3,3],当时,f(x)=-1.
(1)求函数y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并利用图象写出函数y=f(x)的单调区间和值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com