【题目】已知函数f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0, ]时,求f(x)的最大值和最小值.
科目:高中数学 来源: 题型:
【题目】对于函数给出定义:
设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”,
某同学经过探究发现:任何一个三次函数都有“拐点”:任意一个三次函数都有对称中心,且“拐点”就是对称中心,给定函数,请根据上面探究结果:计算____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C1:, 曲线C2:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. 并在两种坐标系中取相同的单位长度。
(1)写出曲线C1,C2的极坐标方程;
(2)在极坐标系中,已知点A是射线l:与C1的交点,点B是l与C2的异于极点的交点,当在区间上变化时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的短轴长为2,离心率e= .
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆交于不同的两点A,B,与圆x2+y2= 相切于点M.
(i)证明:OA⊥OB(O为坐标原点);
(ii)设λ= ,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,,其中是不等于零的常数。
(1)写出的定义域;
(2)求的单调递增区间;
(3)已知函数,定义:,.其中,表示函数在上的最小值,表示函数在上的最大值.例如:,,则,,,,当时,设,不等式恒成立,求,的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家具城进行促销活动,促销方案是:顾客每消费满1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金1000元,某顾客购买一张价格为3400元的餐桌,得到3张奖券,设该顾客购买餐桌的实际支出为(元);
(1)求的所有可能取值;
(2)求的分布列和数学期望;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com