精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.
分析:(1)由分式成立的条件可得,2x-1≠0,从而可求函数的定义域
(2)由函数为奇函数可得f(-x)+f(x)=0对定义域内的任意x都成立,代入整理可求a
(3)利用函数的单调性的定义:设x1,x2∈(-∞,0)∪(0,+∞),且x1>x2,通过做差判断f(x1)与f(x2)的大小,即可判断函数的单调性
解答:解:(1)由分式成立的条件可得,2x-1≠0,
∴x≠0,定义域为{x|x∈R且x≠0}
(2)函数为奇函数可得f(-x)+f(x)=0对定义域内的任意x都成立
a-
1
2-x-1
+a-
1
2x-1
=0

2a=
1
2x-1
-
2x
2x-1
=-1
a=-
1
2

(3)设任意的x1,x2∈(-∞,0)∪(0,+∞),且x1>x2
则f(x1)-f(x2)=
1
2x2-1
-
1
2x1-1
=
2x1-2x2
(2x2-1)(2x1-1)
>0

∴f(x1)>f(x2
∴f(x)在定义域上单调递增.
点评:本题主要考查了函数分式型函数的定义域的求解,奇函数定义的应用,及利用函数的单调性的定义判断函数的单调性,是函数的性质的综合应用.解题的关键是灵活应用函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

同步练习册答案