精英家教网 > 高中数学 > 题目详情

函数y=x|x-2|的单调递增区间是 ________.

(-∞,1),(2,+∞)
分析:先分类讨论去掉绝对值,再结合二次函数的图象求出函数y=x|x-2|的单调递增区间即可.
解答:y=x|x-2|=
再结合二次函数图象可知
函数y=x|x-2|的单调递增区间是(-∞,1),(2,+∞).
故答案为(-∞,1),(2,+∞).
点评:本题主要考查了函数的单调性及单调区间,单调性是函数的重要性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②已知函数f(x+1)=x2,则f(e)=e2-1
③已知函数f(x)=4x2+kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0则函数f(x)、g(x)都是奇函数.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,则下列命题中:?
①若f(x-2)是偶函数,则函数f(x)的图象关于直线x=2对称;?②若f(x+2)=-f(x-2),则函数f(x)的图象关于原点对称;?③函数y=f(2+x)与函数y=f(2-x)的图象关于直线x=2对称;?④函数y=f(x-2)与函数y=f(2-x)的图象关于直线x=2对称.?
其中正确的命题序号是
.?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数f(x)的定义域为R,则下列命题中:?
①若f(x-2)是偶函数,则函数f(x)的图象关于直线x=2对称;?②若f(x+2)=-f(x-2),则函数f(x)的图象关于原点对称;?③函数y=f(2+x)与函数y=f(2-x)的图象关于直线x=2对称;?④函数y=f(x-2)与函数y=f(2-x)的图象关于直线x=2对称.?
其中正确的命题序号是________.?

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案