精英家教网 > 高中数学 > 题目详情

【题目】(本题满分14分)已知是函数的一个极值点.

)求

)求函数的单调区间;

)若直线与函数的图象有3个交点,求的取值范围.

【答案】的取值范围为

【解析】试题分析:(1)先求导,再由是函数的一个极值点即求解;(2)由(2)确定再由求得单调区间;(3)由(2)知,内单调增加,在内单调减少,在上单调增加,且当时,,可得的极大值为,极小值为,再由直线与函数的图象有个交点则须有求解.

试题解析:(1)因为

所以,因此

2)由(1)知,

时,

时,

所以的单调增区间是

的单调减区间是

3)由(2)知,内单调增加,在内单调减少,在上单调增加,且当时,

所以的极大值为,极小值为

因此

所以在在三个单调区间直线的图象各有一个交点,当且仅当

因此,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足条件an+1=
(1)若a1= ,求a2 , a3 , a4的值.
(2)已知对任意的n∈N+ , 都有an≠1,求证:an+3=an对任意的正整数n都成立;
(3)在(1)的条件下,求a2015

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示相等函数的一组是(
A.f(x)=|x|,
B.
C. ,g(x)=x+1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+2 sinxcosx+sin(x+ )sin(x﹣ ),x∈R.
(1)求f(x)的最小正周期和单调增区间;
(2)若x=x0(0≤x0 )为f(x)的一个零点,求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+ )(ω>0)的图象与y=2的图象的两相邻交点的距离为π,要得到y=2sinωx的图象,只需把y=f(x)的图象(
A.向右平移
B.向左平移
C.向左平移
D.向右平移

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2+lnx(其中a≠0)
(1)求f(x)的单调区间;
(2)若f(x)<﹣ 恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax﹣(k﹣1)ax(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断y=f(x)的单调性并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围;
(3)若f(1)= ,g(x)=a2x+a2x﹣2f(x),求k∈N+在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面积S= c2 , 求sinC的值.

查看答案和解析>>

同步练习册答案