精英家教网 > 高中数学 > 题目详情
19.对于使f(x)≥M恒成立的所有常数M中,我们把M的最大值叫做函数f(x)的下确界,则f(x)=$\frac{1}{2x}$+$\frac{2}{1-x}$($\frac{1}{4}$≤x≤$\frac{1}{2}$)的下确界$\frac{9}{2}$.

分析 由乘1法和基本不等式,可得f(x)的最小值,即可得到M的最大值,可得f(x)的下确界.

解答 解:f(x)=$\frac{1}{2x}$+$\frac{2}{1-x}$($\frac{1}{4}$≤x≤$\frac{1}{2}$)
=(x+1-x)($\frac{\frac{1}{2}}{x}$+$\frac{2}{1-x}$)=$\frac{5}{2}$+$\frac{2x}{1-x}$+$\frac{\frac{1}{2}(1-x)}{x}$
≥$\frac{5}{2}$+2$\sqrt{\frac{2x}{1-x}•\frac{\frac{1}{2}(1-x)}{x}}$=$\frac{9}{2}$.
当且仅当$\frac{2x}{1-x}$=$\frac{\frac{1}{2}(1-x)}{x}$,即x=$\frac{1}{3}$时,取得等号.
f(x)的最小值为$\frac{9}{2}$,
则M≤$\frac{9}{2}$.M的最大值为$\frac{9}{2}$.
故答案为:$\frac{9}{2}$.

点评 本题考查新定义的理解和运用,考查函数的最值的求法,注意运用乘1法和基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.给出下列命题:①存在实数α,使sinαcosα=1,②函数y=sin($\frac{3π}{2}$+x)是偶函数;③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)的一条对称轴;④若α、β是第一象限的角,且α>β,则sinα>sinβ.
其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(重点中学做)已知复数z=-1+$\sqrt{3}$i,$\overline{z}$是z的共轭复数,则z$•\overline{z}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若数列{an}的第四项是15,(an+1-an-3)(an+1-4an)=0(n∈N*),则满足条件的a1所有可能值之积为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1,则四面体PABC的外接球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\frac{2si{n}^{2}x+sin2x}{1+tanx}=\frac{1}{2}$($\frac{π}{4}<x<\frac{π}{2}$),则sinx-cosx=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-π,6]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A的元素是由x=a+b$\sqrt{2}$(a∈Z,b∈Z)组成,判断下列元素x与集合A之间的关系:
0,$\frac{1}{\sqrt{2}-1}$,$\frac{1}{\sqrt{3}-\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是$\frac{2}{5}$;从袋中任意摸出2个球,至少得到1个白球的概率是$\frac{7}{9}$.
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,求得到白球的个数为2个白球的概率;
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于$\frac{7}{10}$.并指出袋中哪种颜色的球个数最少.

查看答案和解析>>

同步练习册答案