精英家教网 > 高中数学 > 题目详情
15.已知数列{an}满足a1=1,an+1•an=2n,则S2015等于(  )
A.22015-1B.21008-3C.21009-3D.21009-2

分析 通过an+1•an=2n,作商可知$\frac{{a}_{n+2}}{{a}_{n}}$=2,进而可知数列{an}中奇数项构成以1为首项、2为公比的等比数列,偶数项构成首项、公比均为2的等比数列,计算即得结论.

解答 解:∵an+1•an=2n
∴$\frac{{a}_{n+2}•{a}_{n+1}}{{a}_{n+1}•{a}_{n}}$=$\frac{{2}^{n+1}}{{2}^{n}}$=2,
即$\frac{{a}_{n+2}}{{a}_{n}}$=2,
又∵a1=1,
∴a2=$\frac{{2}^{1}}{{a}_{1}}$=2,
∴数列{an}中奇数项构成以1为首项、2为公比的等比数列,
偶数项构成首项、公比均为2的等比数列,
又∵前2015项中共有奇数项1008项、偶数项1007项,
∴S2015=$\frac{1-{2}^{1008}}{1-2}$+$\frac{2(1-{2}^{1007})}{1-2}$
=21008-1+21008-2
=21009-3,
故选:C.

点评 本题考查数列的通项及前n项和,找出奇数项、偶数项分别构成以2为公比的等比数列是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3}且A≠B,求实数a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-1,则当x<0时,f(x)=1-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{\sqrt{x}-1}{\sqrt{x}+1}$的值域为[-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的通项公式an=3n+1,
(1)求证:数列{an}是等差数列.
(2)若bn=pan+q(p,q为常数),求证:{bn}也是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是R上的减函数,若a+b<0,则下列正确的是(  )
A.f(a)+f(b)<-[f(a)+f(b)]B.f(a)+f(b)<f(-a)+f(-b)C.f(a)+f(b)>-[f(a)+f(b)]D.f(a)+f(b)>f(-a)+f(-b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ln(x+1)-$\frac{1}{x}$
(1)判断函数的零点个数;
(2)若函数的零点在区间(n,n+1)(n∈Z)上,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.计算:7${\;}^{1-lo{g}_{7}5}$=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,B(-2,0),C(2,0),且|AB|+|AC|=3|BC|,则点A的轨迹方程是$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{32}=1(y≠0)$.

查看答案和解析>>

同步练习册答案