精英家教网 > 高中数学 > 题目详情
18.已知中心在原点且经过点(2,1)的椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),试求a的取值范围.

分析 由点(2,1)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上,可得$\frac{4}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1,从而可求a的取值范围.

解答 解:∵点(2,1)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上,
∴$\frac{4}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1,
即$\frac{4}{{a}^{2}}$=1-$\frac{1}{{b}^{2}}$>0,
∴b2>1.
又b<$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
∴1<b2<5.
a2=$\frac{4{b}^{2}}{{b}^{2}-1}$=$\frac{4}{{b}^{2}-1}$+4>4+1=5,
∴a>$\sqrt{5}$
即a的取值范围为($\sqrt{5}$,+∞).

点评 本题考查椭圆方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如果y=f(x)的反函数是y=f-1(x),则下列命题中一定正确的是(  )
A.若y=f(x)在[1,2]上是增函数,则y=f-1(x)在[1,2]上也是增函数
B.若y=f(x)是奇函数,则y=f-1(x)也是奇函数
C.若y=f(x)是偶函数,则y=f-1(x)也是偶函数
D.若y=f(x)的图象与y轴有交点,则y=f-1(x)的图象与y轴也有交点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,保持点P(3,3)与原点的距离不变,并绕原点旋转60°到P′位置,设点P′的坐标为(x′,y′).
(1)点P与原点之间的距离是多少?
(2)向量$\overrightarrow{OP}$与x轴正方向的夹角是多少?
(3)求点P′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若y=-log2(x2-ax-a)在区间(-∞,1-$\sqrt{3}$)上是增函数,则a的范围是[2-2$\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{bn}中,b1=2,bn+1=$\frac{3{b}_{n}+4}{2{b}_{n}+3}$(n∈N*),求b2,b3,试判定bn与$\sqrt{2}$的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别是a,b,c,且cosA=$\frac{3}{4}$.
(1)若C=2A,求$\frac{c}{a}$的值;
(2)若a=$\sqrt{2}$,bc=2,求边b,c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:(5a-$\frac{1}{2}$b2)(25a2+$\frac{1}{4}$b4+$\frac{5}{2}$ab2)=125a3-$\frac{1}{8}{b}^{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设半径为12cm,弧长为8πcm的弧所对的圆心角为α,α∈(0,2π),求出与角α终边相同的角的集合A,并判断A是否为集合B={θ|θ=$\frac{π}{6}$+$\frac{kπ}{2}$,k∈Z}的真子集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若直线l沿x轴向左平移3个单位,再向下平移2个单位后,回到原来的位置,则直线l的斜率为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案