精英家教网 > 高中数学 > 题目详情
(2006•广州一模)在长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,则四棱锥B1-A1BCD1的体积是(  )
分析:以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,由长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,知
A1D1
 
=(-5,0,0)
A1B
=(0,4,-3)
,故平面A1BCD1的法向量为
n
=(x,y,z)
,所以点B1到平面A1BCD1的距离d=
|0+12+0|
0+9+16
=
12
5
,S四边形A1BCD1=5×5=25,由此能求出四棱锥B1-A1BCD1的体积.
解答:解:以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,
∵长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,
∴A1(5,0,3),B(5,4,0),D1(0,0,3),B1(5,4,3),
A1D1
 
=(-5,0,0)
A1B
=(0,4,-3)

设平面A1BCD1的法向量为
n
=(x,y,z)

-5x=0
4y-3z=0
,∴
n
=(0,3,4)

A1B1
=(0,4,0),
∴点B1到平面A1BCD1的距离d=
|0+12+0|
0+9+16
=
12
5

长方体ABCD-A1B1C1D1中,AB=4,AD=5,AA1=3,
A1B=
AA12+AB2
=
9+16
=5,
∴S四边形A1BCD1=A1D1×A1B=5×5=25,
∴四棱锥B1-A1BCD1的体积V四棱锥B1-A1BCD1=
1
3
×S四边形A1BCD1×
12
5
=
1
3
×25×
12
5
=20.
故选B.
点评:本题考查棱锥的体积的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•广州一模)如图,长度为2的线段AB夹在直二面角α-l-β的两个半平面内,A∈α,B∈β,
且AB与平面α、β所成的角都是30°,AC⊥l,垂足为C,BD⊥l,垂足为D.
(Ⅰ)求直线AB与CD所成角的大小;
(Ⅱ)求二面角C-AB-D所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)如下图,在△OAB中,|OA|=|OB|=4,点P分线段AB所成的比为3:1,以OA、OB所在直线为渐近线的双曲线M恰好经过点P,且离心率为2.
(1)求双曲线M的标准方程;
(2)若直线y=kx+m(k≠0,m≠0)与双曲线M交于不同的两点E、F,且E、F两点都在以Q(0,-3)为圆心的同一圆上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)函数y=f(x)是定义在R上的增函数,y=f(x)的图象经过点(0,-1)和下面下面的哪一个点时,能使不等式-1<f(x+1)<1的解集为{x|-1<x<3}(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)已知sin
α
2
-cos
α
2
=
5
5
α∈(
π
2
,π)
tanβ=
1
2

(Ⅰ)求sinα的值;
(Ⅱ)求tan(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)记等差数列{an}的前n项和为Sn,若a9=10,则 S17=
170
170

查看答案和解析>>

同步练习册答案