精英家教网 > 高中数学 > 题目详情
设矩阵(其中a>0,b>0),
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:,求a,b的值.

解:(Ⅰ)设矩阵M的逆矩阵,则

所以,所以2x1=1,2y1=0,3x2=0,3y2=1,
,y1=0,x2=0,
故所求的逆矩阵M-1=
(Ⅱ)设曲线C上任意一点P(x,y),它在矩阵M所对应的线性交换作用下得到点P′(x′,y′),
,即
又点P′(x′,y′)在曲线C′上,所以
为曲线C的方程,
又已知曲线C的方程为x2+y2=1,故
又a>0,b>0,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵M=
.
a0
0b
.
(其中a>0,b>0)
(1)若a=2,b=3.求矩阵M的逆矩阵M-1
(2)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵M=
a0
0b
(其中a>0,b>0),若曲线C:x2+y2=1在矩阵M所对应的变换作用下得到曲线C′ : 
x2
4
+y2=1
,求a+b的值.

查看答案和解析>>

科目:高中数学 来源:2011年普通高中招生考试福建省高考理科数学 题型:解答题

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。

(1)(本小题满分7分)选修4-2:矩阵与变换

设矩阵 (其中a>0,b>0).

(I)若a=2,b=3,求矩阵M的逆矩阵M-1

(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:,求a,b的值.

 

查看答案和解析>>

同步练习册答案