(1)对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(2)设a=-m2,当实数m在什么范围内变化时,函数y=f(x)的图象与直线y=3只有一个公共点.
解:(1)由题意,g(x)=3x2-ax+3a-5.
令φ(a)=(3-x)a+3x2-5,-1≤a≤1.
对-1≤a≤1,恒有g(x)<0,即有φ(a)<0.
∴![]()
即![]()
解得-
<x<1.
故x∈(-
,1)时,对满足-1≤a≤1的一切a的值,都有g(x)<0.
(2)f′(x)=3x2-3m2.
①当m=0时,f′(x)=x3-1的图象与直线y=3只有一个公共点;
②当m≠0时,
列表:
x | (-∞,-|m|) | -|m| | (-|m|,|m|) | |m| | (|m|,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 极大 | ↘ | 极小 | ↗ |
f(x)极小=f(|m|)=-2m2|m|-1<-1.
又因为f(x)的值域是R,且在(|m|,+∞)上单调递增,所以当x>|m|时,函数y=f(x)的图象与直线y=3只有一个公共点.
当x<|m|时,恒有f(x)≤f(-|m|).
由题意得,f(-|m|)<3,
即2m2|m|-1=2|m|3-1<3.
解得m∈(-
,0)∪(0,
).
综上,m的取值范围是(-
,
).
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022
已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.
查看答案和解析>>
科目:高中数学 来源:上海模拟 题型:解答题
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com