1£®Èçͼ£¬ÒÑÖª¶¯Ö±Ïßl½»Ô²£¨x-3£©2+y2=9ÓÚ×ø±êÔ­µãOºÍµãA£¬½»Ö±Ïßx=6ÓÚµãB£»
£¨1£©Èô|OB|=3$\sqrt{5}$£¬ÇóµãA¡¢µãBµÄ×ø±ê£»
£¨2£©É趯µãMÂú×ã$\overrightarrow{OM}=\overrightarrow{AB}$£¬Æä¹ì¼£ÎªÇúÏßC£¬ÇóÇúÏßCµÄ·½³ÌF£¨x£¬y£©=0£»
£¨3£©ÇëÖ¸³öÇúÏßCµÄ¶Ô³ÆÐÔ¡¢¶¥µãºÍͼÐη¶Î§£¬²¢ËµÃ÷ÀíÓÉ£»
£¨4£©ÅжÏÇúÏßCÊÇ·ñ´æÔÚ½¥½üÏߣ¬Èô´æÔÚ£¬ÇëÖ±½Óд³ö½¥½üÏß·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâÇó³öBµÄ×Ý×ø±ê£¬µÃµ½Ö±ÏßOAµÄ·½³Ì£¬ÓëÔ²µÄ·½³ÌÁªÁ¢ÇóµãA¡¢µãBµÄ×ø±ê£»
£¨2£©Éè³öOAËùÔÚÖ±Ïß·½³Ì£¬ÓëÔ²µÄ·½³ÌÁªÁ¢Çó³öAµÄ×ø±ê£¬ÔÙÇó³öBµÄ×ø±ê£¬È»ºóÀûÓÃÏòÁ¿ÏàµÈµÃµ½¹ØÓÚMµÄ²ÎÊý·½³Ì£¬ÏûÈ¥²ÎÊýºóµÃ´ð°¸£»
£¨3£©È¡yΪ-y£¬ÇúÏß·½³Ì²»±ä£¬¿ÉµÃÇúÏßC¹ØÓÚxÖá¶Ô³Æ£¬ÔÙÓÉy2¡Ý0ÇóµÃ·¶Î§£»
£¨4£©Ö±½ÓÓÉx¡ú6£¬$\frac{{x}^{3}}{6-x}$¡ú+¡ÞµÃµ½ÇúÏߵĽ¥½üÏß·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃBµãµÄºá×ø±êΪ6£¬Ôò×Ý×ø±êΪ$¡À\sqrt{£¨3\sqrt{5}£©^{2}-{6}^{2}}$=¡À3£¬
ÉèÖ±ÏßlΪy=kx£¬°ÑBµã×ø±ê´úÈëµÃk=$¡À\frac{1}{2}$Ôò$y=¡À\frac{1}{2}x$£¬
ÁªÁ¢$\left\{\begin{array}{l}{£¨x-3£©^{2}+{y}^{2}=9}\\{y=¡À\frac{1}{2}x}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=\frac{24}{5}}\\{y=¡À\frac{12}{5}}\end{array}\right.$£®
¡àA£¨$\frac{24}{5}$£¬$¡À\frac{12}{5}$£©£¬B£¨6£¬¡À3£©£»
£¨2£©ÉèOAËùÔÚÖ±Ïß·½³ÌΪy=kx£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{£¨x-3£©^{2}+{y}^{2}=9}\end{array}\right.$£¬µÃ${x}_{A}=\frac{6}{{k}^{2}+1}£¬{y}_{A}=\frac{6k}{{k}^{2}+1}$£¬
ÓÖxB=6£¬yB=6k£¬
¡à$\overrightarrow{AB}=£¨\frac{6{k}^{2}}{{k}^{2}+1}£¬\frac{6{k}^{3}}{{k}^{2}+1}£©$£¬
ÉèM£¨x£¬y£©£¬Ôò$\left\{\begin{array}{l}{x=\frac{6{k}^{2}}{{k}^{2}+1}}\\{y=\frac{6{k}^{3}}{{k}^{2}+1}}\end{array}\right.$£¬ÏûÈ¥kµÃ£º${y^2}=\frac{x^3}{6-x}$£»
£¨3£©È¡yΪ-y£¬ÇúÏß·½³Ì²»±ä£¬¡àÇúÏßC¹ØÓÚxÖá¶Ô³Æ£»
ÓÉ$\frac{{x}^{3}}{6-x}¡Ý0$£¬½âµÃ£º0¡Üx£¼6£¬
¡àÇúÏßCµÄ¶¥µãΪ£¨0£¬0£©£»Í¼Ðη¶Î§Âú×ãx¡Ê[0£¬6£©£»
£¨4£©µ±0¡Üx£¼6ʱ£¬Èôx¡ú6£¬Ôò$\frac{{x}^{3}}{6-x}$¡ú+¡Þ£¬
¡àÇúÏßCµÄ½¥½üÏß·½³ÌΪx=6£®

µãÆÀ ±¾Ì⿼²éÖ±ÏߺÍÔ²µÄλÖùØÏµµÄÓ¦Ó㬿¼²éÁËÇúÏß²ÎÊý·½³ÌµÄÇ󷨣¬ÑµÁ·Á˼«ÏÞ˼Ïë·½·¨µÄÓ¦Óã¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÓÃ0µ½9ÕâÊ®¸öÊý×Ö¿ÉÒÔ×é³É¶àÉÙ¸öûÓÐÖØ¸´Êý×ֵģº
£¨1£©ÈýλÊý£¿
£¨2£©ËÄλżÊý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èô¸´Êýz=1+i£¬Ôò$\frac{\overline{z}}{zi}$µÈÓÚ£¨¡¡¡¡£©
A£®1B£®-1C£®iD£®-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÏÂÁÐÃüÌ⣺
¢ÙÒÑÖª¼¯ºÏA£¬B£¬Èôa¡ÊA£¬Ôòa¡Ê£¨A¡ÉB£©£»
¢ÚÈôA¡ÈB=B£¬ÔòA⊆B£»
¢ÛÈôa£¾|b|£¬Ôòa2£¾b2£»
¢Ü3¡Ý2£¬
ÆäÖÐÊÇÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁÐÓйØÃüÌâµÄ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄ·ñÃüÌâΪ£º¡°Èôx2=1£¬Ôòx¡Ù1¡±
B£®ÃüÌâ¡°?x¡ÊR£¬x2+x+2£¼0¡±µÄ·ñ¶¨ÊÇÕæÃüÌâ
C£®ÃüÌâ¡°Èôx=y£¬Ôòx2=y2¡±µÄÄæ·ñÃüÌâÊǼÙÃüÌâ
D£®ÒÑÖªm£¬n¡ÊN£¬ÃüÌâ¡°Èôm+nÊÇÆæÊý£¬Ôòm£¬nÕâÁ½¸öÊýÖÐÒ»¸öÎªÆæÊý£¬ÁíÒ»¸öΪżÊý¡±µÄÄæÃüÌâΪ¼ÙÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ËÄÀâ×¶P-ABCDµÄµ×ÃæABCDΪÕý·½ÐΣ¬PA¡Íµ×ÃæABCD£¬AB=2£¬PA=$\frac{7}{2}$£¬Èô¸ÃËÄÀâ×¶µÄËùÓÐÏîµã¶¼ÔÚͬһÇòÃæÉÏ£¬Ôò¸ÃÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{81¦Ð}{2}$B£®$\frac{81¦Ð}{4}$C£®65¦ÐD£®$\frac{65¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ä³ÈýÀâÖùµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃÈýÀâÖùµÄÌå»ýΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èç¹û$sinx+cosx=-\frac{1}{5}$£¬ÇÒ0£¼x£¼¦Ð£¬ÄÇôsinx-cosxµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{7}{5}$B£®$\frac{4}{5}$C£®$-\frac{4}{5}$D£®$-\frac{7}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªµãA£¨-1£¬0£©£¬B£¨3£¬2£©£¬ÔòÏòÁ¿$\frac{1}{2}$$\overrightarrow{AB}$=£¨¡¡¡¡£©
A£®£¨2£¬2£©B£®£¨-1£¬1£©C£®£¨2£¬1£©D£®£¨-4£¬-2£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸