(本题满分12分)
设椭圆E:
(a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且
?若存在,写出该圆的方程,若不存在说明理由。
|
(1)![]()
(2)存在圆心在原点的圆
,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
.
【解析】
试题分析:(1)因为椭圆E:
(a,b>0)过M(2,
),N(
,1)两点,
所以
解得
所以
椭圆E的方程为![]()
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
,设该圆的切线方程为
解方程组
得
,即
,
则△=
,即![]()
,
![]()
要使
,需使
,即
,所以
,所以
又
,
所以
,所以
,即
或
,
因为直线
为圆心在原点的圆的一条切线,
所以圆的半径为
,
,
,
所求的圆为
,此时圆的切线
都满足
或
,
而当切线的斜率不存在时切线为
与椭圆
的两个交点为
或
满足
,
综上, 存在圆心在原点的圆
,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
.
考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系。
点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理。存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备。(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性。
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com