分析 (1)利用同角三角函数基本关系式求出余弦函数值,利用两角和与差的三角函数化简所求表达式,代入求解即可.
(2)通分然后利用两角和与差的三角函数以及二倍角公式化简求解即可.
解答 解:(1)∵$sinα=\frac{{\sqrt{15}}}{4}$α为第二象限的角
∴$cosα=-\sqrt{1-{{sin}^2}α}=-\frac{1}{4}$…2分
∴$\frac{{sin(α+\frac{π}{4})}}{sin2α+cos2α+1}=\frac{{\frac{{\sqrt{2}}}{2}sinα+\frac{{\sqrt{2}}}{2}cosα}}{{2sinαcosα+2{{cos}^2}α}}=\frac{{\frac{{\sqrt{2}}}{2}}}{2cosα}$=$-\sqrt{2}$…5分
(2)原式=$\frac{cos10°-\sqrt{3}sin10°}{sin10°•cos10°}$
=$\frac{2(cos60°•cos10°-sin60°•sin10°)}{\frac{1}{2}sin20°}$…8分
=$\frac{4cos70°}{sin20°}$=4…10分
点评 本题考查两角和与差的三角函数,二倍角公式的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | y=-3x+4 | B. | y=$\frac{1}{3}$x+4 | C. | y=-3x-6 | D. | y=$\frac{1}{3}$x+$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,-$\frac{1}{2}$) | B. | [-3,-$\frac{1}{2}$] | C. | [-5,-$\frac{1}{2}$) | D. | [-5,-$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$R | B. | $\frac{\root{3}{3}}{3}$R | C. | $\frac{\root{3}{25}}{5}$R | D. | $\frac{\sqrt{3}}{3}$R |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 84 | C. | 52 | D. | 48 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | {-1,0,1} | C. | {0,1} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com