精英家教网 > 高中数学 > 题目详情
12.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名
女生,则不同的选法种数为(  )
A.120B.84C.52D.48

分析 根据题意,从反面分析,分别求得“8人中任选3人的组队方案”与“没有女生的方案”的方法数,进而由“没有女生的方案”与“至少有一名女生入选的组队方案”互为对立,计算可得答案.

解答 解:8人中任选3人的组队方案有C83=56,
没有女生的方案有C43=4,
所以符合要求的组队方案数为52种;
故选C.

点评 本题考查组合的运用,处理“至少有一名”类问题,宜选用间接法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆台的两个底面面积分别为4π和25π,圆台的高为4,求圆台的体积与侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨).一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中a的值;
( II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
( III)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),则每位居民的月均用水量x在哪一组?,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+bx-lnx(a,b∈R).
(1)设b=2-a,求f(x)的零点的个数;
(2)设a>0,且对于任意x>0,f'(1)=0,试问lna+2b是否一定为负数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知α为第二象限角,且 sinα=$\frac{{\sqrt{15}}}{4}$,求$\frac{{sin(α+\frac{π}{4})}}{sin2α+cos2α+1}$的值
(2)求值:$\frac{1}{sin10°}$-$\frac{\sqrt{3}}{sin80°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的定义域为R.?a,b∈R,若此函数同时满足:
①当a+b=0时,有f(a)+f(b)=0;
②当a+b>0时,有f(a)+f(b)>0,
则称函数f(x)为Ω函数.
在下列函数中:
①y=x+sinx;
②y=3x-($\frac{1}{3}$)x
③y=$\left\{\begin{array}{l}{0,x=0}\\{-\frac{1}{x},x≠0}\end{array}\right.$
是Ω函数的为①②.(填出所有符合要求的函数序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{a}{3}$x3-$\frac{1}{2}$(a+1)x2+x-$\frac{1}{3}$(a∈R).
(1)若a<0,求函数f(x)的极值;
(2)当a≤$\frac{1}{2}$时,判断函数f(x)在区间[0,2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,在(0,+∞)上单调递增的是(  )
A.y=$\frac{1}{x}$B.y=1-x2C.y=($\frac{1}{10}$)xD.y=lgx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.
(1)求证:AF⊥平面FBC;
(2)求钝二面角B-FC-D的大小.

查看答案和解析>>

同步练习册答案