精英家教网 > 高中数学 > 题目详情
1.下列函数中,在(0,+∞)上单调递增的是(  )
A.y=$\frac{1}{x}$B.y=1-x2C.y=($\frac{1}{10}$)xD.y=lgx

分析 直接利用函数的单调性,判断选项即可.

解答 解:由题意可知,选项A,B,C三个函数都是在(0,+∞)上单调递减,只有y=lgx在(0,+∞)上单调递增.
故选:D.

点评 本题考查函数的单调性的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤0}\\{{x}^{2}+x-3,x>0}\end{array}\right.$,则f[f(1)]=(  )
A.-3B.1C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名
女生,则不同的选法种数为(  )
A.120B.84C.52D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则$\overrightarrow{C}$=(  )
A.(6,-2)B.(5,0)C.(-5,0)D.(0,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=ax2+2x+c(a≠0),函数f(x)对于任意的都满足条件f(1+x)=f(1-x).
(1)若函数f(x)的图象与y轴交于点(0,2),求函数f(x)的解析式;
(2)若函数f(x)在区间(0,1)上有零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数y=ax在区间[0,2]上的最大值和最小值的和为5,则函数y=logax在区间[$\frac{1}{4}$,2]上的最大值和最小值之差是(  )
A.1B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a>1,函数f(x)=log2(x2+2x+a),x∈[-3,3].
(1)求函数f(x)的单调区间;
(2)若f(x)的最大值为5,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一算法的流程图如图所示,则输出S为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=x3-3x在[-1,2]的最小值为(  )
A.2B.0C.-4D.-2

查看答案和解析>>

同步练习册答案