精英家教网 > 高中数学 > 题目详情
已知a,b∈R+,函数f(x)=
ax+1+bx+1
ax+bx
(x∈R)

(1)判断函数f(x)的单调性,并证明你的结论;
(2)比较
a2+b2
a+b
ab
的大小.
分析:(1)利用函数单调性的定义证明.(2)通过作差法判断大小.
解答:解:(1)函数f(x)=
ax+1+bx+1
ax+bx
(x∈R)
递增函数,证明如下:
设x<y,则x-y<0,f(x)-f(y)=
(a-b)(ax-y-bx-y)ayby
(ax+bx)(ay+by)

①当a=b时,f(x)为常数函数,此时不单调.
②若a>b,则a-b>0,ax-y<bx-y,ax-y-bx-y<0,所以f(x)<f(y),
此时函数f(x)=
ax+1+bx+1
ax+bx
(x∈R)
递增函数.
③当a<b,则a-b<0,ax-y>bx-y,ax-y-bx-y>0,所以f(x)<f(y),
此时函数f(x)=
ax+1+bx+1
ax+bx
(x∈R)
递增函数.
(2)
a2+b2
a+b
-
ab
=
a2+b2-a
ab
-b
ab
a+b
=
a2+b2-a
3
2
b
1
2
-a
1
2
b
3
2
a+b
=
(a
3
2
-b
3
2
)(a
1
2
-b
1
2
)
a+b

因为幂函数x
3
2
x
1
2
在(0,+∞)上单调递增,具有相同的单调性.
所以当a=b时,
a2+b2
a+b
=
ab

当a≠b时,
a2+b2
a+b
ab
点评:本题的考点是利用作差法比较两个数的大小以及利用单调性的定义去判断函数的单调性,作差法是比较大小中最常用的一种方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b∈R,向量
e1
=(x,1),
e2
=(-1,b-x),函数f(x)=a-
1
e1
e2
是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年河北省高二下学期3月月考数学卷 题型:解答题

已知函f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+ f′\(x)是奇函数。

(1)求f(x)的表达式;

(2)试论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a、b∈R,向量数学公式=(x,1),数学公式=(-1,b-x),函数f(x)=a-数学公式是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学一模试卷(文理合卷)(解析版) 题型:解答题

已知a、b∈R,向量=(x,1),=(-1,b-x),函数f(x)=a-是偶函数.
(1)求b的值;
(2)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

同步练习册答案