精英家教网 > 高中数学 > 题目详情
(2007•深圳二模)如图,已知命题:若矩形ABCD的对角线BD与边AB和BC所成角分别为α,β,则cos2α+cos2β=1,若把它推广到长方体ABCD-A1B1C1D1中,试写出相应命题形式:
长方体ABCD-A1B1C1D1中,对角线BD1与棱AB、BB1、BC所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
长方体ABCD-A1B1C1D1中,对角线BD1与棱AB、BB1、BC所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
分析:找出类比对象:长方形与长方体,找出类比的元素:边与面;面对角线与体对角线,写出类比性质.
解答:解:长方形与空间的长方体类比
长方形的对角线类比长方体的体对角线
长方形的对角线与两边所成的角与长方体的体对角线与同对角线有公共顶点的三边所成的角类比
所以有长方体ABCD-A1B1C1D1中,对角线BD1与棱AB、BB1、BC所成的角分别为α、β、γ,则cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
点评:本题考查利用类比推理写结论.关键是找出类比的元素及性质.一般是线与面类比;面对角线与体对角线类比.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•深圳二模)已知集合M={-1,0},则满足M∪N={-1,0,1}的集合N的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳二模)已知双曲线
x2
a2
-
y2
b2
=1
的两条渐近线互相垂直,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳二模)把正奇数数列{2n-1}的各项从小到大依次排成如下三角形状数表记M(s,t)表示该表中第s行的第t个数,则表中的奇数2007对应于.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳二模)某中学有高一学生400人,高二学生300人,高三学生500人,现用分层抽样的方法在这三个年级中抽取120人进行体能测试,则从高三抽取的人数应为(  )

查看答案和解析>>

同步练习册答案