已知曲线Cn∶y=nx2,点pn(xn,yn)(xn>0,yn>0)是曲线Cn上的点(n=1,2,…).
(1)试写出曲线Cn在点Pn处的切线ln的方程,并求出ln与y轴的交点Qn的坐标;
(2)若原点O(0,0)到ln的距离与线段PnQn的长度之比取得最大值,试求试点Pn的坐标(xn,yn);
(3)设m与k为两个给定的不同的正整数,xn与yn是满足(2)中条件的点Pn的坐标,证明:(s=1,2,……)
科目:高中数学 来源:湖南省衡阳八中2012届高三第三次月考数学理科试题(人教版) 人教版 题型:044
已知曲线C:y=4x,Cn:4x+n(n∈N*),从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1),设x1=1,an=xn+1-xn,
.
(1)求数列{xn}的通项公式;
(2)记,数列{cn}的前n项和为Tn,求证:;
(3)若已知,记数列{an}的前n项和为An,数列{dn}的前n项和为Bn,试比较An与的大小.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年度广东省普宁第二中学高二上学期11月月考理科数学试卷 题型:解答题
(本小题满分14分)已知曲线从C上一点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1)。设x1=1,an=xn+1-xn,bn=yn-yn+1
①求Q1,Q2的坐标 ;②求数列{an}的通项公式;
③记数列{an·bn}的前n项和为Sn,求证:
查看答案和解析>>
科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题
(本小题满分14分)已知曲线从C上一点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1)。设x1=1,an=xn+1-xn,bn=yn-yn+1
①求Q1,Q2的坐标 ;②求数列{an}的通项公式;
③记数列{an ·bn}的前n项和为Sn,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
已知曲线Cn:y=nx2,点Pn(xn,yn)(xn>0,yn>0)是曲线Cn上的点(n=1,2,…).
(1)试写出曲线Cn在点Pn处的切线ln的方程,并求出ln与y轴的交点Qn的坐标;
(2)若原点O(0,0)到ln的距离与线段PnQn的长度之比取得最大值,试求点Pn的坐标(xn,yn).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com