精英家教网 > 高中数学 > 题目详情
如图,在直角坐标系中,中心在原点,焦点在X轴上的椭圆G的离心率为,左顶点A(-4,0),圆O':(x-2)2+y2=r2是椭圆G的内接△ABC的内切圆.
(Ⅰ) 求椭圆G的方程;
(Ⅱ)求圆O'的半径r;
(Ⅲ)过M(0,1)作圆G的两条切线交椭圆于E,F两点,判断直线EF与圆O'的位置关系,并证明.

【答案】分析:(Ⅰ)利用椭圆G的离心率为,左顶点A(-4,0),可求椭圆的标准方程;
(Ⅱ) 可取BC⊥X轴时来研究,则可设B(2+r,y),过圆心G作GD⊥AB于D,BC交长轴于H由,再由点B(2+r,y)在椭圆上,建立关于r的方程求解.
(Ⅲ)设过点M(0,1)与圆相切的直线方程为:y-1=kx,由圆心到直线的距离等于半径求,与椭圆方程联立,表示出E,F和坐标,从而得到EF所在的直线的方程,再探讨圆心到直线的距离和半径的关系.
解答:解:(Ⅰ) ,a=4得,椭圆G方程为-------(5分)
(Ⅱ)设B(2+r,y),过圆心o'作O'D⊥AB于D,BC交长轴于H
,即     (1)---------(7分)
而点B(2+r,y)在椭圆上,(2)-----(9分)
由(1)、(2)式得15r2+8r-12=0,解得(舍去)-------(11分)
(Ⅲ)直线EF与圆O'的相切
设过点M(0,1)与圆相切的直线方程为:y-1=kx(3)
,即32k2+36k+5=0(4)
解得
将(3)代入得(16k2+1)x2+32kx=0,则异于零的解为-------(13分)
设F(x1,k1x1+1),E(x2,k2x2+1),则
则直线FE的斜率为:
于是直线FE的方程为:
则圆心(2,0)到直线FE的距离故结论成立.------------(15分)
点评:本题主要是通过圆和椭圆来考查直线和圆,直线和椭圆的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系中,射线OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),
过点P(1,0)作直线分别交射线OA、OB于A、B点.
①当AB的中点为P时,求直线AB的方程;
②当AB的中点在直线y=
1
2
x上时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系中,已知△ABC的三个顶点的坐标,求:
(1)直线AB的一般式方程;
(2)AC边上的高所在直线的斜截式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,直线y=6-x与y=
4x
(x>0)
的图象相交于点A、B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为
4,12
4,12

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系中,A,B,C三点在x轴上,原点O和点B分别是线段AB和AC的中点,已知AO=m(m为常数),平面上的点P满足PA+PB=6m.
(1)试求点P的轨迹C1的方程;
(2)若点(x,y)在曲线C1上,求证:点(
x
3
y
2
2
)
一定在某圆C2上;
(3)过点C作直线l,与圆C2相交于M,N两点,若点N恰好是线段CM的中点,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,中心在原点,焦点在x轴上的椭圆G的离心率为
15
4
,左顶点为A(-4,0).圆O′:(x-2)2+y2=
4
9

(Ⅰ)求椭圆G的方程;
(Ⅱ)过M(0,1)作圆O′的两条切线交椭圆于E、F,判断直线EF与圆的位置关系,并证明.

查看答案和解析>>

同步练习册答案