精英家教网 > 高中数学 > 题目详情
已知△ABC的顶点A,B,C的坐标分别为(x,y),(-8,0)和(-2,0).
(1)求证:AB=2AC的充要条件为x2+y2=16(y≠0);
(2)若AB2+AC2=50,求△ABC面积的最大值.
分析:(1)△ABC中,利用两点间的距离公式可得AB=2AC 等价于
(x+8)2y2
=2
(x+2)2+y2
(y≠0),化简即x2+y2=16(y≠0).
(2)若AB2+AC2=50,由基本不等式可得AB×AC≤25.△ABC中,由余弦定理求得cosA 的值,可得 sinA 的值,代入△ABC面积为
1
2
×AB×AC sinA化简得△ABC面积的最大值.
解答:解:(1)证明:△ABC中,AB=2AC等价于
(x+8)2y2
=2
(x+2)2+y2
 (y≠0),
即(x+8)2+y2=4(x+2)2+4y2 (y≠0),
即 x2+y2=16(y≠0).
故AB=2AC的充要条件为x2+y2=16(y≠0).
(2)若AB2+AC2=50,则  50≥2AB×AC,∴AB×AC≤25.
△ABC中,由余弦定理可得 36=AB2+AC2-2AB•ACcosA=50-2AB•ACcosA,∴cosA=
7
AB×AC
,∴sinA=
1-
49
(AB•AC)2

故△ABC面积为
1
2
×AB×AC sinA=
1
2
(AB×AC )2- 49
1
2
252-49
=12.
故△ABC面积的最大值为12.
点评:本题主要考查两点间的距离公式、余弦定理、同角三角函数的基本关系,以及基本不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xoy中,已知△ABC的顶点A(-1,0)和C(1,0),顶点B在椭圆
x2
4
+
y2
3
=1
上,则
sinA+sinC
sinB
的值是(  )
A、
3
2
B、
3
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(2,8),B(-4,0),C(6,0),
(1)求直线AB的斜率; 
(2)求BC边上的中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A,B的坐标分别为(-4,0),(4,0),C 为动点,且满足|AC|+|BC|=
54
|AB|
,求点C的轨迹方程,并说明它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(1,3),AB边上的中线CM所在直线方程为2x-3y+2=0,AC边上的高BH所在直线方程为2x+3y-9=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(0,-4),B(0,4),且4(sinB-sinA)=3sinC,则顶点C的轨迹方程是
y2
9
-
x2
7
=1
(y>3)
y2
9
-
x2
7
=1
(y>3)

查看答案和解析>>

同步练习册答案