精英家教网 > 高中数学 > 题目详情
已知函数f(x)在R上递增,若f(2-x)>f(x2),则实数x的取值范围是(  )
A、(-∞,-1)∪(2,+∞)
B、(-∞,-2)∪(1,+∞)
C、(-1,2)
D、(-2,1)
考点:函数单调性的性质
专题:函数的性质及应用
分析:由题意可得可得2-x>x2 ,即x2+x-2<0,由此求得实数x的取值范围.
解答: 解:由于函数f(x)在R上递增,f(2-x)>f(x2),可得2-x>x2 ,即x2+x-2<0,
求得-2<x<1,
故选:D.
点评:本题主要考查函数的单调性的定义,一元二次不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知数列{an}的前n项和为Sn,a1=2,当n≥2时,Sn-1+1,an,Sn+1成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
3n
SnSn+1
,Tn是数列{bn}的前n项和,求证Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在x=x0处可导,且f(0)=0,求
lim
x→0
f(tx)-f(-tx)
x
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=2ax2(a≠0)焦点坐标是(  )
A、(
a
2
,0)
B、(0,
a
2
C、(
1
8a
,0)
D、(0,
1
8a

查看答案和解析>>

科目:高中数学 来源: 题型:

证明命题:“f(x)=ex+
1
ex
在(0,+∞)上是增函数”,现给出的证法如下:
因为f(x)=ex+
1
ex
,所以f′(x)=ex-
1
ex

因为x>0,所以ex>1,0<
1
ex
<1,
所以ex-
1
ex
>0,即f′(x)>0,
所以f(x)在(0,+∞)上是增函数,使用的证明方法是(  )
A、综合法B、分析法
C、反证法D、以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:

己知曲线C1:y=-x2+1(y≤0)与x轴交于A,B两点,点P为x轴上方的一个动点,点P与A,B连线的斜率之积为-4
(Ⅰ)求动点P的轨迹C2的方程;
(Ⅱ)过点B的直线l与C1,C2分别交于点M,Q(均异于点A,B),若以MQ为直径的圆经过点A,求△AMQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=8x2+ax+5在(-∞,1]上递减,那么a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-1)-2lnx(a为常数)
(Ⅰ)当a=1对,求f(x)单调区间;
(Ⅱ)若函数f(x)在区间(0,1)上无零点,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(g(x))=9x+3,g(x)=3x+1,则f(x)的解析式为(  )
A、3xB、3
C、27x+10D、27x+12

查看答案和解析>>

同步练习册答案