精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-
ax2+9
(-3≤x≤0),点P(-1,-
5
)
在f(x)的反函数的图象上.
(1)求a的值,并求出f(x)的反函数f-1(x);
(2)解方程:f-1(x)=-2.
分析:(1)利用函数f(x)的反函数的图象经过点P可知点Q(-
5
,-1)
在函数f(x)的图象上,由此代入数值即可求得.最后再求其反函数即可;
(2)由(1)得f-1(x),列方程解之即得.
解答:解:(1)依题意,点Q(-
5
,-1)
在函数f(x)的图象上,
将x=-
5
,y=-1,代入f(x)=1-
ax2+9
中,
解得a=-1,
f(x)=1-
-x2+9

f(x)的反函数f-1(x)=-
9-(1-x)2
,(-2≤x≤1)
(2)方程:f-1(x)=-2即:
-
9-(1-x)2
=-2

解得:x=1-
5
点评:本题考查了互为反函数的函数图象之间的关系,本题的解答,巧妙的利用互为反函数的函数图象间的关系,将反函数图象上的点转化为原函数图象上的点,过程简捷!这要比求出原函数的反函数,再将点的坐标代入方便的多,不妨一试进行比较.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案