精英家教网 > 高中数学 > 题目详情
如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求二面角B﹣AP﹣D的余弦值.
(I)证明:∵∠ABC=90°,AB=BC=1,∴AC=
∵四边形ABCD为直角梯形,AD=2,AB=BC=1
∴CD=
∴AC2+CD2=AD2,∴∠ACD=90°
∴DC⊥AC
∴平面PAC⊥平面ACD,平面PAC∩平面ACD=AC.
∴DC⊥平面APC;
(II)建立如图所示的空间直角坐标系,
则A(0,0,0),B(1,0,0),D(0,2,0),P(
=
设平面APB的法向量为
平面APD的法向量为


∴可取
同理
=
∵二面角B﹣AP﹣D的平面角为钝二面角
∴二面角B﹣AP﹣D的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求棱锥A-PBC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,已知四边形ABCD内接于⊙O,且AB为⊙O的直径,直线MN切
⊙O于D,∠MDA=45°,则∠DCB=
135°
135°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知四边形ABCD是正方形,PD⊥平面ABCD,PD=AD,点E,F分别是线段PB,AD的中点
(1)求证:FE∥平面PCD;
(2)求异面直线DE与AB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD为直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC将△ABC折起,使点B到点P的位置,且平面PAC⊥平面ACD.
(I)证明:DC⊥平面APC;
(II)求二面角B-AP-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四边形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC与BD交于E点,F是PD的中点.
(1)求证:PB∥平面AFC;
(2)求多面体PABCF的体积.

查看答案和解析>>

同步练习册答案