精英家教网 > 高中数学 > 题目详情
设命题p:实数x满足x2-4ax+3a2≤0,其中a>0;命题q:实数x满足x2-x-6≤0,且?p是?q的必要不充分条件,求a的取值范围.
分析:利用不等式的解法求解出命题p,q中的不等式范围问题,结合二者的关系得出关于字母a的不等式,从而求解出a的取值范围.
解答:解:x2-4ax+3a2=0对应的根为a,3a;由于a>0,
则x2-4ax+3a2<0的解集为(a,3a),故命题p成立有x∈(a,3a);
由x2-x-6≤0得x∈[-2,3],故命题q成立有x∈[-2,3],
?p是?q的必要不充分条件,即p是q的充分不必要条件,
因此有(a,3a)?[-2,3],解得,-2≤a≤1
又a>0,所以0<a≤1,
故a的取值范围为:0<a≤1.
点评:本题考查一元二次不等式的解法,考查二次不等式与二次函数的关系,注意数形结合思想的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
x2+2x-8>0

(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,a∈R;命题q:实数x满足x2-x-6≤0,或x2+2x-8>0,
(1)求命题p,q的解集;
(2)若a<0且?p是?q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
x2+2x-8>0

(1)若a=
5
2
,若p∧q假,p∨q真,求实数x的取值范围;
(2)¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0(a>0)命题q:实数x满足
x2-x-6<0
x2+2x-8>0

(1)若a=1,且p∩q为真,求实数x的取值范围
(2)若?p是?q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
|x+1|>3

(1)若a=1,且p且q为真,求实数x的取值范围;
(2)非p是非q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案