【题目】如图,椭圆
的离心率为
,以椭圆
的上顶点
为圆心作圆,
,圆
与椭圆
在第一象限交于点
,在第二象限交于点
.
![]()
(1)求椭圆
的方程;
(2)求
的最小值,并求出此时圆
的方程;
(3)设点
是椭圆
上异于
的一点,且直线
分别与
轴交于点
为坐标原点,求证:
为定值.
科目:高中数学 来源: 题型:
【题目】如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,E是PC中点,F是AB中点.
(Ⅰ)求证:BE∥平面PDF;
(Ⅱ)求直线PD与平面PFB所成角的正切值;
(Ⅲ)求三棱锥P﹣DEF的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知抛物线
的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为
,且
.
(Ⅰ)求此抛物线
的方程;
(Ⅱ)过点
做直线
交抛物线
于
两点,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】轮船
从某港口将一些物品送到正航行的轮船
上,在轮船
出发时,轮船
位于港口
北偏西
且与
相距20海里的
处,并正以30海里的航速沿正东方向匀速行驶,假设轮船
沿直线方向以
海里/小时的航速匀速行驶,经过
小时与轮船
相遇.
(1)若使相遇时轮船
航距最短,则轮船
的航行速度大小应为多少?
(2)假设轮船
的最高航速只能达到30海里/小时,则轮船
以多大速度及什么航行方向才能在最短时间与轮船
相遇,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大理石工厂初期花费98万元购买磨大理石刀具,第一年需要各种费用12万元,从第二年起,每年所需费用比上一年增加4万元,该大理石加工厂每年总收入50万元.
(1)到第几年末总利润最大,最大值是多少?
(2)到第几年末年平均利润最大,最大值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在[﹣1,1]上的奇函数f(x),已知当x∈[﹣1,0]时的解析式f(x)=
﹣
(a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与圆![]()
(1)若直线
与圆
相交于
两个不同点,求
的最小值;
(2)直线
上是否存在点
,满足经过点
有无数对互相垂直的直线
和
,它们分别与圆
和圆
相交,并且直线
被圆
所截得的弦长等于直线
被圆
所截得的弦长?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3万元、2万元,甲、乙产品都需要在
两种设备上加工,在每台
上加工1件甲所需工时分别是1
、2
,加工1件乙所需工时分别为2
、1
,
两种设备每月有效使用台时数分别为400
和500
,如何安排生产可使收入最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com