分析 确定△QAP为等边三角形,设AQ=2R,则OP=R,利用勾股定理,结合余弦定理,即可得出结论.
解答
解:因为∠PAQ=60°且OQ=3OP,
所以△QAP为等边三角形,
设AQ=2R,则OP=R,
渐近线方程为y=$\frac{b}{a}$x,A(a,0),取PQ的中点M,则AM=$\frac{|-ab|}{\sqrt{{a}^{2}+{b}^{2}}}$
由勾股定理可得(2R)2-R2=($\frac{|-ab|}{\sqrt{{a}^{2}+{b}^{2}}}$)2,
所以(ab)2=3R2(a2+b2)①
在△OQA中,$\frac{(3R)^{2}+(2R)^{2}-{a}^{2}}{2•3R•2R}$=$\frac{1}{2}$,所以7R2=a2②
①②结合c2=a2+b2,可得e=$\frac{c}{a}$=$\frac{\sqrt{7}}{2}$.
点评 本题考查双曲线的性质,考查余弦定理、勾股定理,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{10}}{5}$ | B. | $\frac{18}{5}$ | C. | $\frac{16}{5}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com