精英家教网 > 高中数学 > 题目详情
关于函数f(x)=lg
x
x2+1
,有下列结论:①定义域是(0,+∞);②是奇函数;③最大值为-lg2;④0<x<1时单增,x>1时单减.其中正确结论的序号是______.
①函数f(x)的定义域是(0,+∞),令
x
x2+1
>0,解得x>0,故定义域是(0,+∞),命题正确;
②函数f(x)是奇函数,由①知,定义域不关于原点对称,故不是奇函数,命题不正确;
③函数f(x)的最大值为-lg2,因为f(x)=lg
x
x2+1
=lg
1
x+
1
x
≤lg
1
2
=-lg2
,最大值是-lg2,故命题正确;
④当0<x<1时,函数f(x)是增函数;当x>1时,函数f(x)是减函数,命题正确,因为f′(x)=lg
1-x2
(x2+1)2
,令导数大于0,可解得0<x<1,令导数大于0,得x>1,故命题正确.
综上,①③④正确
故答案为:①③④
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列四个命题:
(1)一定存在直线l,使函数f(x)=lgx+lg
12
的图象与函数g(x)=lg(-x)+2的图象关于直线l对称;
(2)在复数范围内,a+bi=0?a=0,b=0
(3)已知数列an的前n项和为Sn=1-(-1)n,n∈N*,则数列an一定是等比数列;
(4)过抛物线y2=2px(p>0)上的任意一点M(x°,y°)的切线方程一定可以表示为y0y=p(x+x0).
则正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
)
的图象为L,下列说法不正确的是(  )
A、图象L关于直线x=
6
对称
B、图象L关于点(
12
,0)
对称
C、函数f(x)在(-
π
6
π
3
)
上单调递增
D、将L先向左平移
π
12
个单位,再将所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到y=sinx的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
②若m≥-1,则函数f(x)=log
1
2
(x2-2x-m)
的值域为R;
③“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
④函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑤“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充要条件;
其中正确命题的个数是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的为
①③④
①③④

①函数y=f(x)与直线x=l的交点个数为0或l;
②a∈(
1
4
,+∞)时,函数y=lg(x2+x+a)的值域为R;
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
④若函数f(x)=ax,则?x1,?x2∈R,都有f(
x1+x2
2
)<
f(x1)+f(x2
2

⑤若函数f(x)=log
2
x
,则?x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
(1)一定存在直线l使函数f(x)=lgx+lg
1
2
的图象与函数g(x)=lg(-x)+2的图象关于直线l对称
(2)不等式:arcsinx≤arccosx的解集为[
2
2
,1]

(3)已知数列{an}的前n项和为Sn=1-(-1)n,n∈N*,则数列{an}一定是等比数列;
(4)过抛物线y2=2px(p>0)上的任意一点M(x°,y°)的切线方程一定可以表示为y0y=p(x+x0).
则正确命题的序号为
(3)(4)
(3)(4)

查看答案和解析>>

同步练习册答案